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M A T H E M A T I C A L  M O D E L  O F  A H E T E R O G E N E O U S  M E D I U M  

C O N S I S T I N G  OF A M A T R I X  A N D  S P H E R I C A L  I N C L U S I O N S  

S. P. Ki se l ev  and V.  M.  Fomin  UDC 539.374 

A mathematical model of a heterogeneous medium consisting of an elastoplastic matrix and 
elastic spherical inclusions is constructed. The model takes into account plastic zones, which 
appear in the vicinity of the inclusions. It is shown that when the effect of plastic zones is taken 
into account, the averaged "moduli" of volume compression, shear, and yield strength depend 
not only on the volume concentrations of the inclusions, but also on the mean pressure in the 
medium. 

We consider a heterogeneous material consisting of a matrix with spherical inclusions of radius a. We 
assume that  the  volume concentration of the inclusions is small (ml << 1) and their yield strength is rather 
large. In this case, the inclusions do not contact each other directly and experience elastic deformation. This 
situation is typical of heterogeneous materials that have a metal matrix and inclusions in the form of carbide 
particles. The equation of state for the matrix and inclusions is assumed to be known; it is necessary to 
find an equation of state for the whole heterogeneous material, which is a composite. This equation of state 
should determine the relationship between the mean stresses and mean strains in the composite. Many papers 
are devoted to the solution of this problem; a list of these papers can be found in the monographs [1-3]. 
Nevertheless, the authors are not aware of any papers where the effect of the plastic zone appearing in the 
vicinity of an inclusion was discussed in deriving the equation of state. 

We use the averaging technique developed previously in [4-6] for a porous elastoplastic material. 
The heterogeneous material is divided into spherical cells of radius b with a spherical inclusion of radius 

a in the center of each cell (Fig. 1). The cell radius b is determined from the formula 

b---- a/roll /3,  m l  = (413)Tra3n, 

where n is the concentration of inclusions (the number of inclusions per unit volume) and ml is the volume 
concentration of inclusions (the fraction of unit volume occupied by inclusions). Averaging the actual stresses 
~ j  and strains e~j over the cell volume, we obtain 

(rij mlcr! 1) -- m = -?- 2aij  , 

where 

= m _(2) r ml~!~ ) "Jr" 2~ij , (I) 

aij = crij r = ~ ~ij = aij dV, ~ij'(k) = ~1 r dV, 
v v ~k 

Vk 4 3, 4 4 3 
m k =  V '  m l q - m 2  = 1, Vl = 57ra V2- , , r r (b  3 - a 3 ) ,  V =  57rb 

1 
r = -~r + eij, o'ij = -p6ij  + Sij, i = 1 , 2 , 3 ,  j = 1 , 2 , 3 ,  
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o'ij, ~ i j ,  S i j ,  and eij  are the tensors of mean stresses, mean strains, and their deviators, and the superscripts 
(1) and (2) indicate the inclusion and the matrix, respectively. Assuming the strains to be small, we suppose 
that  the material of inclusions is described by the Hooke's law 

(1),= S}))t/(2/tl ), (2) r = -p (1) ' /Kl ,  eij  

where K1 is the modulus of volume compression and #1 is the shear modulus; summation is performed over 
repeated indices. The matrix material obeys the Hooke's law in the elastic region and to the Prandtl-Reiss 
model in the plastic region: 

(2)t__ J i j  
eiJ --  o,.^ 

~) '  = -p(~)'/K~, 
(2), 

s's for x~)'< YL I~ ~)'= -3s!?)'.~!~)' (a) 
2/z2 2 'J mj , 

�9 

~ij : 2~--~- + for = y~ .  

Here/2(2), is the second invariant of the actual stress deviator tensor, I/2 is the .yield strength of the matrix 
material,  the dot denotes the derivative with respect to time, and the parameter A is found from the condition 
i~2), = y22. 

Averaging system (2) over the inclusion volume and system (3) over the matrix volume, we obtain the 
following equations, which relate the mean stresses and strains in the matrix: 

e~2) = p(2) e! 2) -- S}~) for 1~2) < y22, 
K2'  - 2 m  (4) 

) + for ' • r 
= 2~---~ = v 2 _ J  

V2 

and in the inclusion: 

p(1) e!])- S! 1) 
~ 1 )  = I~-'a' - -  2/ta' (5) 

where p(1) and S} 1) are t h e m e a n  pressure and stress tensor deviator in the inclusion, and p(2) and S}~ ) are 
the corresponding quantities in the matrix. Let a uniform stress o'ij be applied to the external boundary of 
the cell. We choose a Cartesian coordinate system (xa, x2, x3) whose origin is in the center of the cell (Fig. 1) 
and whose axes coincide with the main axes of the stress tensor o'ii. In this case, we have o'ij = cri6ij and 
ei j  : e i6i i  (no summation over i is performed). Substituting these relations into system (1), we have 

Ci = ma~!l)-1 - m2~! 2), p =  map (1) -[-m2p (2), Si = miS}l )d  - m2S} 2). (6) 

If we substitute ~!1) and s! 2) from Eqs. (4) and (5) into the right side of the first equation in (6), we obtain 

the dependence ~i = 95i(p (1), p(2), s}a) S}2)). With account of the last two equations in (6), the number of 

independent variables can be reduced to two, for example, ei = cyi(p (a), S}D). Thus, the problem is to express 

p(1) and S} a) in terms of p and Si ,  where o'i = - p  + S i  is the stress applied to the cell. We have to solve the 
problem on the cell (Fig. 1), i.e., the equilibrium equations with the boundary conditions 

Oa~i , , 
OXi : O, O'iJ[r=b -: O'ij, Ui r=O : O, 

which should be supplemented by closing relations (2) and (3). In the elastoplastic case, there is no exact 
solution to this problem; therefore, an approximate solution is constructed below. 
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First,  we consider a s impler  problem, where a pressure p is applied to the external boundary of the cell. 
The  solution of this problem is known [7]; therefore, we formulate the problem and show the solution. Along 
with the  Cartesian coordinate system, we introduce the spherical coordinates (r, 0, ~p) (Fig. 1), in which the 
equil ibrium equation and the  boundary  conditions have the  form 

da'  r 9.(a' - a ; )  ' u~ ' a', ,=b 
dr + r = O, ato = a~,  = u~, = - p .  

The sys tem of equations should be supplemented by the  conditions of continuity of normal stresses and 
displacements at the matr ix- inc lus ion interface and zero displacements at the point  r = 0: 

I t 
Utla--O ~--" Ut a+O' ar a--O = ar a+O' UI r = O  = O .  

Here u' = u~(r)  is the displacement  of the material along r. Following [7], we write the solution of this problem. 
In the region occupied by the  inclusion, the strain is uniform and is determined from the formula 

p(1) t P (1)r 
e(~) = I Q '  u = - 3K----I-" (7) 

The  stresses in the material  in the  elastic case ]p[ < ]p0[ are given by the formulas 

a r - - p T A p ( 1  - b 3  1- -  , , 

b 3 

(s) 

a ~ , = - - p + A p  1 +  1--  , a ~ = a ~ .  

In the elastoplastic case Ip01 < Ipl < Ip, I, the stresses in the  matr ix have the form 

r ' I 1, p < 0 ,  , _p(1) 2~eY21nr , = - p ( 1 )  zeY2+2aeY~lna,  t -1 ,  p > 0  a ~ =  + a'  % + - Q = % ,  2 =  

for a < r ~< c and (9) 

' ~eY2 1 -- a~ = zeY2 1 + a~ i 
a ~ = - P + 5  ' - P + 5  ~ , =a~, 

( 1  - ~ - = - ~ a ~ 2  ( ~ ) ) ,  p.  -- -~zeY21n ( b )  3 

for c < r ~ b. Here c is the  radius of the plastic zone (Fig. 1), p0 is the pressure at which the plastic zone 
appears, p .  is the pressure at which the plastic zone fills the  entire volume of the  matrix, and the superscript 
(1) indicates the corresponding pressures in the inclusion, which are found below from the condition of 
displacement continuity at r = a. Stresses (8) and (9) satisfy the continuity condition for a t at the interface 
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between the matrix and inclusion. The displacement of the matrix material for r > a is given by the formulas 

b3a3 
u rp(2) _ (p  _ p(1)~ 

- ~ + 6u, 6u = zeY2 c 3 J4#2(b3-  a3)r2' [p] < IPol, 

Ipol Ipl < Ip, I, (lO) 

2 
+ + 

The radius of the plastic zone c is determined from the last equation in (10). We use the condition u a - 0  = u a + 0  

to determine p(1). First, we consider an elastic case without a plastic zone. We find p0) from the condition of 
displacement continuity at r = a. Assuming r = a in formulas (7) and (10) and equating them to an accuracy 
of the terms O(ml) ,  we obta in  

p(1) p (1 + p(')) 
Ki = K2 + 2(1-2v2)K2 ( i i )  

We take into account that  
1 2 l + g 2  1 

#2 - 3 1 - 2v2 K2' (12) 

where v2 is the Poisson's ratio of the matrix. Resolving Eq. (11) relative to p0) ,  we obtain 

1 +v2  
p(D = p(1  - (K2 - K 1 ) / ( K 2 +  K1 2 ( 1 - 2 v 2 ) ) ) "  (13) 

This solution allows us to find the relationship between ekk and p. Subs t i tu t ing  (4) and (7) into the first 
equation of (6), we find 

p(2) p(1) 
Ei = - - r n 2 - -  -- m, 

3K2 3K1 

from which, with account of (6) and (13), we have 

p ( 3rnl(l - v2)(Kl -- K2) 
ekk = - -~ ; ,  K = K2 1 + (I + v2)K1 " ~ ' 1 ~ - ] 2 v ~ ' 2 ] "  (14) 

Note that  formula (14) for K coincides with the corresponding formula (4.7) in [1]. In the elastoplastic ~ e  
]Pl > tP01, a plastic zone r = c appears in the vicinity of the inclusion; the displacements in the matr ix are 
determined by formulas (10) at [p0[ ~< [Pl < [P*]. Equating the displacements in the matrix (10) and in the 
inclusion (7) at r = a, we obta in  the following equation for p(D: 

p(1) p ze I + v2 rnp (15) 
K1 K2 3K2 f ---'2-~2 Y2 re'--l"" 

Here rnp = (c/b)  3 is the volume fraction occupied by the plastic zone. The  radius of the plastic zone c is 
determined from the last equat ion  of system (10). The  solution of this equat ion can be found numerically 
and, as shown in [5, 6], approximated  by the Gurson formula 

(~ )3  1 1 +  m 2 2ml cosh3(P - p ' l ' )  = rnp = l - m e ,  me  ,-m (16) 
rn2 m2 2I/2 ' 

where me is the volume fraction of the cell in an elastic state. According to [5, 6], rnp is a monotonic (increasing) 
function of p - p(1); therefore, Eq. (15) for a given p ([pl > [p0[) has the  unique root pO), which is found 
below for some specific cases using the numerical Newton method. Subs t i tu t ing  (15) into (13), we find the 
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relationship between etck and p in the  elastoplastic case 

p m l p - - p ( 1 )  zeY2 l + v 2  ( c )  3 
e/~k = h'2 m2 K-----~ + 3K-----2 1 - 2 u 2  rap' m p =  , , g  , Ip0l < [pl ~< Ip.I. (17) 

Here p0) is found from Eq. (15) and rnp from Eq. (16). If we write Eq. (17) in the  form ekk = - p / K ,  it 
follows tha t  K = K(p, ml).  For tpl > Ip, l, the averaged "modulus" of volume compression remains constant 
and equal to K = K(p . ,ml ) .  The  pressure p0 at which the plastic zone appears is determined from the 
condition mp(po) = ml. Subst i tu t ing  this condition into Eq. (15), we rewrite it together  with the second to 
the last equat ion of system (9) in the  form 

P0 -- p~l) 2 = --5 Y2r-2, 

The solution of this system of equations is 

P0 = - ~ z e Y 2  m2q- - -  

K2 ,,(1) p0 - lacY2 1 + v2 
hq = 5 i" 

K1 l + v 2  /(2 '~ 
2K2 1 - 2v2 K2 -- KI')" 

( i s )  

Considering successively compression ~e = - 1  (p0 > 0) and expansion ze = 1 (p0 < 0) of the heterogeneous 
material,  we find that  Eq. (18) has a solution only in the case K2 > K1. This does not  mean, however, that  
the plastic zone can arise only in the case where the volume compression coefficient of the  matrix K2 is greater 
than K1 in the  inclusion. According to [7], the components of the stress tensor (9) in the  yield state a < r < c 
satisfy the condition 

' ' / 1, p < 0, 
a ~ - a ~ = a e Y 2 ,  ae= -1 ,  p > 0 .  (19) 

k 

The sign of ze in Eq. (19) is chosen f rom the solution of the elastic problem, for which from (8) we obtain 

I t 3 ml b 3 
- = - 3  (p - (20) 

According to Eq. (13), we have 

/( p _ p(1) = p(K2 - K1) K2 31" h'l 2(1 - -~2) '  ' (21) 

! I 
therefore, for K2 > Ks, it follows from (20) and (21) that  ~r~, - ~r -,, - p ,  wherefrom we obtain 

I I I I c r ~ , - a  r > 0  for p < 0 ,  a ~ , - a ~ < 0  f o r p > 0 .  (22) 

Inequalities (22) serve as a basis for choosing the sign of ze in Eq. (19). For 1(2 < K1, it follows from (20) and 
! t (21) that  a~, - a r ,-., p; hence, the following inequalities are valid: 

l I I I a ~ , - c r  r < 0  f o r p < 0 ,  a ~ , - c r ~ > 0  f o r p > 0 .  (23) 

From inequalities (23), we find that ,  for/s < K1, the signs of ze in the yield condit ion (19) should he reversed: 

' ' / - 1 ,  p < 0, 
a~-cr~=zeY2,  ze= ~. 1, p > O .  (24) 

Thus, Eq's. (19) and (24) allow us to determine the sign of ~e in (18) for arbitrary KI  and K2. Hence, a plastic 
zone will appear  for all ratios K2/K1 other than  unity. 

We consider the more general case where a uniform stress aij = ( - p  + Si)~ij is applied to the cell 
boundary v = b (no summat ion  over i is performed). As noted above, there is no exact  solution to this problem. 
Therefore, following [4-6], we construct  an approximate solution, which satisfies the  boundary conditions 

alr[r=b =--p  + S1 n2 + S2n i + S3n 2, (25) 

where n l  = sin 0 cos ~, n2 = sin 0 sin % and n3 = cos 0 are the components of the  normal  vector to the cell 
surface (Fig. 1). Approximate solutions of the equilibrium equations with the  boundary  condition (25) are 
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determined by formulas (7)-(10) with the following substitution: - p  --+ o',~ = - p  4- San~ 4- S2n 2 + S3n 2. The 
displacement in the Cartesian coordinate sys tem at the point with the coordinates (v, 9, qv) is determined 
by the formula ui = niu(r, nl,n2,n3); hence, the  displacement of the points formed by intersection of the 
Cartesian axes with a sphere of radius r is de termined by formulas (7) and (10) with the substitution - p  --* 
- p  + 5/. As a result, the displacements in the  inclusion r < a are determined by the formula 

ui = -p(1)r/(3K1) + S!1)r/(2#1), 

and the displacements in the matrix a ~ r < b are found from the formula 

ui = -p(2)r/(3K2) 4- S!2)r/(2#2) q- ~ui. 

In the elastic case Ipl < Ipol we have 

~ui= p_p(1)  1 4-v2 ml  b 3 + S i - S !  1) ml  b 3 

61s 1 --2v2 rn2 r 2 4/z2 m2 r 2" 

In the plastic case ]Po] ~< ]Pl < IP*[, we obtain 

~ui -- 

where ci is determined from the equation 

3 ~Y2 c i 
6#2 r 2 ' 

(26) 

(27) 

(2s) 

(29) 

p_ p0)_ (Si-  S! 1)) + ~'aeY2 (1 - (b)3+ 31n ~-) = 0. (30) 

Expanding expression (30) into a power series (Si - -  S!D)/Y2 and subst i tut ing into Eq. (29), we find 

,~Y2 1 4- v2 b 3 Si -- S! I) mp b 3 
~ui -- 9K2 1 - 2v2 r -'~ rnp 4- (31) 4#2 me r 2" 

As shown below, the components  of the stress deviator satisfy the inequality (3/2)($12 4- $22 + S~) ~< y2, from 

which we obtain [Sil <~ fi-] '3Y for an individual component.  The  averaged yield strength Y is determined 
from formula (39) derived below, from which we obtain the inequality Y < Y2. Thus, we have a limitation 
from above 

which justifies expansion (31). 

I S i -  S}1)[ I& l  IS l Y .f2 Y 
< 2-T - 

< 1, 

From the displacement continuity condit ion (26), (27) at r = a, taking into account Eqs. (6), (11), 
(12), (15), (28), and (31), we obtain the equations 

S! I) S, S i -  S! 1) S! 1) Si + S i -  S! 1) mp IPo[ < [P[ < IP*I. 
2/~1 - 2#---2 + 4#2 , [Pl < IP0l, 2g~ - 2/~---2 4/~2ma m r '  

Resolving these equations,  we obtain the following formulas for S!I): 

(32) /( ) ,5'i -- S! 1) = Si(#2 -- #1) #2 + 2mlrne#l  , ]P0I • Ipl < [p,I. 

Substituting (4) into the first equation of system (6) and separating the  spherical and deviator components 
of the strain tensor, we obtain 

ei = m2S!2)/(2~t2) + mlS!l)/(2#l),  (33) 
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where  S!  2) = ( S i -  rnlS}l))/m2. Using f o r m u l a s  (32),  we can  rewr i t e  Eq.  (33) in t h e  f o r m  

3 r - i ( . ,  - .~)'~, 
/t2( 1. + ~- - -~- -~-- - - )  IPl < IP0I, Si 

(34) 

Formulas (14), (17), and (34) are the closing relations for a heterogeneous medium consisting of a matrix 
and spherical inclusions. It follows from these formulas that ,  when the effect of the plastic zone is taken into 
account, the averaged "moduli" of shear/~ and volume compression K depend not only on porosity ml,  but 
also on the pressure p. 

Until now we assumed that the entire material of the matrix or a part of it is in the elastic state 
i~2) < y22. If the entire material  of the matrix transforms to the plastic state/2(2) = y22, its plastic flow is 
observed. According to (4), the increment of the strain deviator is 

= ds!}) (35) 
2/22 A- 

where d)~ is found from the condition 

i f 3_.q!.2),.9!2), dV = r2. (36) 
V2 v2 2-'J -'J 

1 fS!}), dV and fluctuating S!}) Substituting the deviator of microstresses S,j), a s ! 2  the sum of mean S,j )_-(_.2 = ~2-2v 2 

S!]) + ~!2), we obtain the following expression from Eq. (36): stresses Dij 

3__,r ~!2)d v 1 d 3_~!2) ~!2) 2 - .  - ' ,  + g 2 - -  - .  ~ v  = r~ .  (37) 
" z  

Here we used [S!}) dV = 0. By analogy with [4-61, we assume that ~!}) arise under the action of the pressure 

v2 
p applied to the cell surface. In this case, we have 

) �89 2 - "  - "  ~22 2 \ ' ~ "  + 2('~(2))2_ dV, (38) 

= i and i where ~!2) = a~' + p,, ~(2) = o~' + p', p' - ( 1 / 3 ) ( a '  + 2o'~), and cr~ a~, are the microstresses in the cell 
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' and ' f rom (8) and induced by the pressure p, which are calculated by formulas (8) and (9). Substituting a r cr~ 
(9) into (37) and (38), we obtain 

2 - ' J  - '~ = y2 ,  (39) 

y2 = ~ Y~m~ - (9 /4)(p  - p( ' ))2m,,  Ipl < Ipol, 
(40) ( Iv01 < Iph 

where p(1) and me are de te rmined  above. Using formula (16), we approximate expression (40) by the Gurson 
formula 

y2 = y2(l  +m21- 2ml cosh(3 p -  p(1) )). 
Equations (35), (39), and (40) allow us to find the  increments of the strain tensor for a plastic flow of the 
matr ix  material. Figures 2 and 3 show the averaged "modulus" K and the yield strength Y as functions of 
the pressure p for different values of ml  calculated using the above-derived formulas (14), (15), (17), and (39). 
The  radius of the plastic zone was found from the  last equation of system (10), which was solved numerically 
using the Newton method  with account of (15). It was assumed in the calculations that  the cell consists of 
an a luminum matr ix  (K2 = 8 �9 10 l~ Pa, #5 = 2.48 �9 10 l~ Pa, and Y2 = 3.  l0 s Pa) and a carbide SiC inclusion 
(K1 = 2.13 - 1011 Pa and #1 = 1.87- 1011 Pa). T h e  crosses in Fig. 2 indicate the points p = p0 where the 
plastic zone originates. The  dependence K(p) in Fig. 2 was constructed until p = p,; for p > p .  the averaged 
"modulus" K remains constant  and equal to K(p., ml) .  The magnitude of K decreases by 10-20% under 
the influence of the plastic zone, and the smaller rnl ,  the weaker its effect on K. Note that  the  dependence 
of the averaged shear "modulus" ~ on pressure has a similar character. For rnl < 10 -3, the values of K, I~, 
and Y are almost constant  and equal to K2, #2, and  I'~, respectively. As the pressure Ipl increases, the yield 
s t rength Y decreases (Fig. 3) and vanishes when the  pressure reaches the critical value [p. I. As a result, the 
mean stress tensor in the composite aii becomes spherical. Thus, for IPl > IP*I, the mechanical properties of 
a composite become similar to the properties of a fluid. 
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